# Basic content filtering example
def classify_image_content(image_path):
model = ResNet34()
image = cv2.imread(image_path)
results = model.inference(image, top_k=10)
# Define categories of interest
animal_classes = ['dog', 'cat', 'bird', 'horse', 'cow']
vehicle_classes = ['car', 'truck', 'motorcycle', 'bicycle']
nature_classes = ['tree', 'flower', 'mountain', 'beach']
categories = []
for pred in results['predictions']:
class_name = pred['class'].lower()
if any(animal in class_name for animal in animal_classes):
categories.append(f"Animal: {pred['class']}")
elif any(vehicle in class_name for vehicle in vehicle_classes):
categories.append(f"Vehicle: {pred['class']}")
elif any(nature in class_name for nature in nature_classes):
categories.append(f"Nature: {pred['class']}")
return categories
categories = classify_image_content("test_image.jpg")
print("Image contains:", categories)